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Abstract
Based on the analytical transfer matrix method (ATMM), the universal
dispersion equation determining the energy spectrum for an arbitrary potential
function experienced by a particle with arbitrary position-dependent effective
mass distribution is obtained. As an illustrative example, for a given mass
distribution m (x) and a potential function V (x), our predicted results are in
complete agreement with the exact ones. The energy spectrum of a harmonic
oscillator with nonconstant mass is obtained. Since the exact solutions to
Schrödinger equation with nonconstant effective mass are a valuable means
for checking and improving models and numerical methods in the study of
electronic properties, the ATMM will find wide applications in material science
and condensed matter.

PACS numbers: 03.65.Xp, 03.65.Ge, 03.65.Ca

1. Introduction

The motion of free carriers (electrons and holes) in semiconductors of nonuniform chemical
composition is sometimes described by means of a Hamiltonian possessing a position-
dependent effective mass, and the Schrödinger equation with position-dependent effective
mass have also found wide applications in the study of electronic properties of quantum dots
[1], quantum liquids [2], semiconductor superstructures [3] and so on. In fact, numerous
examples can be found in the literature [4, 5] where the effective-mass approximation is
claimed to produce good results, provided that suitable values are chosen.

Until recently, the solutions to this problem have been extensively developed. A
general form of the generator of su (1, 1) was employed to show that the solutions
are free from the choice of parameters for position-dependent mass [6]. The universal
formalism of supersymmetric quantum mechanics was extended by Plastino et al [7] to
the Schrödinger equation with position-dependent effective mass. Coordinate transformation
in supersymmetric quantum mechanics was used in [8] to generate isospectral potentials with
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position-dependent mass. The ordering ambiguity of the mass and momentum operator and
its effect on the exact solution were addressed in [9]. It is easily found that most of them solve
Schrödinger equation according to the procedure: for a given mass distribution, their aims are
to obtain the energy spectrum and potential function. However, the obtained potential function
is dependent on the mass distribution and a known potential function for which the solutions
to Schrödinger equation can be derived, which hampers their applications in actual physical
systems. Furthermore, most of the methods mentioned above did not give the constraints
imposed on the mass distribution or the potential function such that the problem becomes
solvable.

In our work [10], an exact method for solving the Schrödinger equation with constant mass
was developed by using the analytical transfer matrix method (ATMM). It was demonstrated
that the ATMM can be applied to an arbitrary potential function, and the dispersion equation
reads ∫ xt2

xt1

κ(x) dx + φ(s) = (n + 1)π (n = 0, 1, 2, . . .) (1)

where κ(x) is defined by h̄κ(x) = √
2m[E − V (x)] , which is the local momentum of a

particle with constant mass m whose total energy is E. The concept of phase contribution
φ(s) due to the scattering of sub-waves is put forward and the phase shift at the classical
turning point is proved to be exactly π , regardless of whether it is in the limit of short wave
or long wave. These two substantial improvements play a crucial role in deriving the exact
energy spectrum. In [11], we have successfully derived the energy splitting in symmetric
double-well potentials with the ATMM. So it is clear that the ATMM is a powerful tool for
energies of the bound states.

2. Exact dispersion equation

We discuss here that the ATMM can give exact energy spectrum when it is applied to an
arbitrary potential well in which the effective mass of the particle is position dependent.
Von Roos [12] was the first to suggest the following form of the kinetic energy operator
T = 1

4 (mη Pmε Pmρ + mρ Pmε Pmη), where η + ε + ρ = −1. Apparently, different ordering
renders different energy spectrum and wavefunction, however, the literature [13–15] shows
that the single-particle wavefunction and eigenenergies comply with a Schrödinger equation
of the form [

−∇ h̄2

2m(x)
∇ + V (x)

]
ψ(x) = Eψ(x) (2)

where m(x) and V (x) are arbitrary mass distribution and arbitrary potential well, respectively,
and P = −ih̄∇ with ρ = 0, ε = −1 and η = 0. The following analysis is based on
equation (2).

When the term E −V (x) vanishes, the two classical turning points xt1 and xt2 are always
given. We simultaneously truncate the tail of the profile of V (x) and of mass m(x) at two
appropriate points xC and xD , which are far away from the turning points, and divide the
regions (xC, xt1), (xt1, xt2) and (xt2, xD) into l, f and g section layers with equal width d,
respectively. Each layer is with piecewise constant potential energy and the effective mass.
The truncation certainly affects the values of energy levels, as compared to the situation in an
idealized system. The effects will clearly be negligible if the potential at the truncation points
is very much larger than energies of relevant levels. The discretized Schrödinger equation for
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the ith region with constant potential energy Vi and constant effective mass mi can be written
as

d2

dx2
ψi(x) + κ2

i ψi(x) = 0 (xi−1 � x � xi) (3)

with

κi(x) = ±
√

2mi[E − Vi]/h̄ (4)

where the subscript i is an integer ranging from 1 to l + f + g, ψi(x) representing the
wavefunction in the ith section layer and κi stands for the wavevector in the same layer
along the x direction. If κ2

i � 0, the energy E is above the barrier Vi , and physically it is an
oscillatory wave solution. While for κ2

i � 0, it is an evanescent wave solution. Equation (4)
is still valid if one substitutes κi = iαi and uses the equalities, cos(iαix) = cosh(αix) and
sin(iαix) = i sinh(αix).

The solution of equation (3) can be written as a superposition of left and right travelling
plane wavefunctions

ψi(x) = Ai exp[jκi(x − xi−1)] + Bi exp[−jκi(x − xi−1)] (xi−1 � x � xi) (5)

and the wavefunction connection rules across an abrupt interface are (i) the continuity of the
wavefunction

ψi−1(xi−1) = ψi(xi−1) (6)

and (ii) the continuity of the flux

1

mi−1

d

dx
ψi−1(xi−1) = 1

mi

d

dx
ψi(xi). (7)

From the discussion above, the transfer matrices corresponding to the rth, uth and vth
section layers can be written as

Mr =
[

cosh(αrd) mr

αr
sinh(αrd)

αr

mr
sinh(αrd) cosh(αrd)

]
αr =

√
2mr [Vr − E]/h̄ (8)

Mu =
[

cos(κud) mu

κu
sin(κud)

− κu

mu
sin(κud) cos(κud)

]
κu =

√
2mu[E − Vu]/h̄ (9)

and

Mv =
[

cosh(αvd) mv

αv
sinh(αvd)

αv

mv
sinh(αvd) cosh(αvd)

]
αv =

√
2mv[Vv − E]/h̄ (10)

where the subscripts r, u and v are integers ranging from 1 to l, from l + 1 to l + f and from
l + f + 1 to l + f + g, respectively. We define

PC =
√

2m(xC)[V (xC) − E]/h̄ (11)

and

PD =
√

2m(xD)[V (xD) − E]/h̄ (12)

which are the equivalent attenuation coefficients at the points xC and xD , respectively.
By employing the transfer matrix method, the following matrix equation is given:[
ψ(xC)

1
m(xC)

ψ ′(xC)

]
=

(
l∏

r=1

Mr

) (
l+f∏

t=l+1

Mt

)
 l+f +g∏

v=l+f +1

Mv




[
ψ(xD)

1
m(xD)

ψ ′(xD)

]
. (13)

and the prime ′ in equation (13) denotes the derivative with respect to x.
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After simple algebra manipulation, if l, f and g → ∞(d → 0), we obtain the simple
dispersion equation∫ xt2

xt1

κ(x) dx + φ(s) = nπ + arctan

(
Pl

κl+1

ml+1

ml

)

+ arctan

(
Pl+f +1

κl+f

ml+f

ml+f +1

)
(n = 0, 1, 2, . . .) (14)

where the term φ(s) is determined from

φ(s) =
l+f −1∑
u=l+1

[
φu+1 − arctan

(
κu+1

κu

mu

mu+1
tan φu+1

)]
(15)

with

φu = arctan

(
Pu

κu

)
(16)

and

Pu = κu

[
arctan

(
Pu+1

κu

mu

mu+1

)
− κud

]
(17)

Pr = αr

(1/mr) sinh(αrd) + (Pr−1/αr) cosh(αrd)

cosh(αrd) + (Pr−1/αrmr) sinh(αrd)
(18)

Pv = αv

(1/mv) sinh(αvd) + (Pv+1/αv) cosh(αvd)

cosh(αvd) + (Pv+1/αvmv) sinh(αvd)
(19)

P0 = PC, Pl+f +g+1 = PD. (20)

In equation (14), n is the quantum number and equation (14) is the universal dispersion
equation determining the energy spectrum for an arbitrary potential function experienced by
a particle with position-dependent effective mass.

If we equate κq+1/mq+1 = κq/mq in equation (15), which means we have neglected
the potential profile difference of the neighbouring sections of layers, we obtain φ(s) = 0,
thus φ(s) can also be interpreted as the phase contribution due to the scattering of the sub-
waves. If we do not take the variation of effective mass into account, i.e., the mass distribution
m(x) = constant, then equation (14) is reduced to equation (1) which is a natural consequence.
Furthermore, the values of κl+1 and κl+f at the classical turning points are both zero, so

arctan

(
Pl

κl+f

ml+1

ml

)
= arctan

(
Pl+f +1

κl+f

ml+f

ml+f +1

)
= π

2
(21)

which means that the phase shift at the classical turning points for the particle whose effective
mass is position dependent is exactly equal to π .

3. Results

For the purpose of numerical illustration of the above theory, we consider the choice of the
mass distribution m(x) used in [7]

m(x) =
(

α + x2

1 + x2

)2

m(0) = α2 m(±∞) = 1 (22)
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Table 1. Comparison of the energy spectrum for harmonic oscillator with nonconstant effective
mass to that with constant mass using the ATMM (h̄ = 1).

n 0 1 2 3 4 5

E (constant) 0.500 00 1.500 00 2.500 00 3.500 00 4.500 00 5.500 00
E (nonconstant) 0.315 40 0.872 11 1.507 15 2.187 14 2.896 62 3.628 41

n 6 7 8 9 10 11

E (constant) 6.500 00 7.500 00 8.500 00 9.500 00 10.500 00 11.500 00
E (nonconstant) 4.377 91 5.141 92 5.918 14 6.704 83 7.500 64 8.304 48

n 12 13 14 15 16 17

E (constant) 12.500 00 13.500 00 14.500 00 15.500 00 16.500 00 17.500 00
E (nonconstant) 9.115 47 9.932 87 10.756 01 11.584 57 12.417 89 13.255 66

and the potential function V (x) is determined from

V (x) = 1

2
[x + (α − 1) tan−1(x)]2 +

(α − 1)

2(α + x2)4
[3x4 + (4 − 2α)x2 − α] (23)

which is a shape-invariant potential function characterized by one single parameter α. The
reason that we choose the above example is that it possesses the following exact energy
spectrum:

En = (
n + 1

2

)
(n = 0, 1, . . .) (24)

so that we can compare our result with it, though the chosen potential function (23) is very
complex. On the other hand, the energy spectrum is the spectrum of a harmonic oscillator
with constant mass. After the numerical calculations we obtained the energy spectrum for the
potential function (23) with the formalism (14), i.e., E0 = 0.5, E1 = 1.5, E2 = 2.5, E3 =
3.5, . . . . The agreement is seen to be excellent, which shows that our method is exact. For
simplicity, we do not test other examples.

It is well known that the standard model of harmonic oscillator with constant mass plays
an important role in theoretical physics. But in some particular situations, the constant mass
is replaced by the effective mass which may be position dependent. Next we consider the
harmonic oscillator in the potential well V (x) = 1

2x2 and it is with the position-dependent
effective mass distribution (22) when α = 2. The energy eigenvalues E (nonconstant) are
listed in table 1, compared with the energy eigenvalues E (constant) for the constant mass
m = 1.

It can be seen that the energy eigenvalues we obtained have a greater shift compared with
the energy eigenvalues with constant mass, i.e., all of them decrease a lot. We look forward to
the exact results showing a valuable means for checking and improving models and numerical
methods in the study of electronic properties. At the same time, the results will challenge the
standard model for which the mass of harmonic oscillator is constant. Because there are no
results obtained by other methods, we can not compare our results with them. The concept of
phase contribution is very important for deriving the exact energies, but we still cannot find
the integral instead of sum form (15). Although some numerical methods such as Numerov
or Runge–Kutta integration are straightforward, they can not supply the deep insight as the
ATMM does, i.e., the ATMM gives the exact phase shift at the turning point and a better
understanding of the phase contribution due to sub-waves scattering. Although the effective
mass approximation is not exact in actual applications, the ATMM is exact for the Schrödinger
equation with nonconstant effective mass through finer divisions, for example, we divide the
whole potential profile (xC < x < xD) into 104 layers.
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4. Conclusions

Dispersion equation (14) is presented in a simple and clear manner, whose terms are physically
explicit and it can be applied to arbitrary potential wells in which the effective mass distribution
of the particle can also be arbitrary, and the ATMM differs essentially from the methods
mentioned in paragraph 2, i.e., it is not necessary to know in advance a potential function
for which the solution of Schrödinger equation must be known. The method will find wide
applications in calculating the exact values of lifetime for electrons in quantum wells with an
applied electric field and it is able to determine the total lifetime of quasi-bound energy levels
in the presence of inelastic scattering mechanisms, which are qualitatively modelled by an
energy broadening imaginary potential. In addition, it can solve the transmission problems
easily. In fact, we can derive the exact profiles of the mass distribution and potential function
according to the energy spectrum of a real physical system through the inverse analytical
transfer matrix method (IATMM). Since the Schrödinger equation for a spherically symmetric
potential can be transformed into a one-dimensional equation, all such problems can also be
solved using the same method. All of them mentioned above are in progress.
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